Social microbiota and social gland gene expression of employee honey bees by age and local weather

[ad_1]

  • Evans, J. D. & Spivak, M. Socialized medication: particular person and communal illness obstacles in honey bees. J. Invertebr. Pathol. 103, S62–S72 (2010).

    PubMed 

    Google Scholar 

  • Hughes, D. P., Pierce, N. E. & Boomsma, J. J. Social insect symbionts: evolution in homeostatic fortresses. Traits Ecol. Evol. 23, 672–677 (2008).

    PubMed 

    Google Scholar 

  • Simone, M., Evans, J. D. & Spivak, M. Resin assortment and social immunity in honey bees. Evolution 63, 3016–3022 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Dalenberg, H., Maes, P., Mott, B., Anderson, Ok. E. & Spivak, M. Propolis envelope promotes helpful micro organism within the honey bee (Apis mellifera) mouthpart microbiome. Bugs 11, 1–12 (2020).

    Google Scholar 

  • Poulsen, M., Bot, A. N. M., Nielsen, M. G. & Boomsma, J. J. Experimental proof for the prices and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behav. Ecol. Sociobiol. 52, 151–157 (2002).

    Google Scholar 

  • Rosengaus, R. B., Traniello, J. F. A., Lefebvre, M. L. & Maxmen, A. B. Fungistatic exercise of the sternal gland secretion of the dampwood termite Zootermopsis angusticollis. Insect. Soc. 51, 259–264 (2004).

    Google Scholar 

  • Kwong, W. Ok. & Moran, N. A. Intestine microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maes, P. W., Floyd, A. S., Mott, B. M. & Anderson, Ok. E. Overwintering honey bee colonies: impact of employee age and local weather on the hindgut microbiota. Bugs 12, 1–16 (2021).

    Google Scholar 

  • Brown, B. P. & Wernegreen, J. J. Deep divergence and speedy evolutionary charges in gut-associated Acetobacteraceae of ants. BMC Microbiol. 16, 140 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, A. E. The microbial dimension in insect dietary ecology. Funct. Ecol. 23, 38–47 (2009).

    Google Scholar 

  • Kešnerová, L. et al. Intestine microbiota construction differs between honeybees in winter and summer time. ISME J. 14, 801–814 (2020).

    PubMed 

    Google Scholar 

  • Raymann, Ok., Shaffer, Z. & Moran, N. A. Antibiotic publicity perturbs the intestine microbiota and elevates mortality in honeybees. PLoS Biol. 15, 1–22 (2017).

    Google Scholar 

  • Anderson, Ok. E. & Ricigliano, V. A. Honey bee intestine dysbiosis: a novel context of illness ecology. Curr. Opin. Insect Sci. 22, 125–132 (2017).

    PubMed 

    Google Scholar 

  • Maes, P. W., Rodrigues, P. A. P., Oliver, R., Mott, B. M. & Anderson, Ok. E. Food plan-related intestine bacterial dysbiosis correlates with impaired growth, elevated mortality and Nosema illness within the honeybee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal illness. bioRxiv https://doi.org/10.1101/2020.01.21.914325 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Motta, E. V. S., Raymann, Ok. & Moran, N. A. Glyphosate perturbs the intestine microbiota of honey bees. Proc. Natl. Acad. Sci. USA 115, 10305–10310 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grice, E. A. & Segre, J. A. The pores and skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corby-Harris, V. et al. Origin and impact of Alpha 2.2 Acetobacteraceae in honey bee larvae and outline of Parasaccharibacter apium gen. nov., sp. nov.. Appl. Environ. Microbiol. 80, 7460–7472 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Floyd, A. S. et al. Microbial ecology of european foul brood illness within the honey bee (Apis mellifera): in direction of a microbiome understanding of illness susceptibility. Bugs 11, 1–16 (2020).

    MathSciNet 

    Google Scholar 

  • Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial group buildings in honeybee intestines and their response to 2 insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Sabree, Z. L., Hansen, A. Ok. & Moran, N. A. Unbiased research utilizing deep sequencing resolve the identical set of core bacterial species dominating intestine communities of honey bees. PLoS ONE 7, e41250 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, Ok. E. et al. Microbial ecology of the hive and pollination panorama: bacterial associates from floral nectar, the alimentary tract and saved meals of honey bees (Apis mellifera). PLoS ONE 8, e83125 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rokop, Z. P., Horton, M. A. & Newton, I. L. G. Interactions between cooccurring lactic acid micro organism in honey bee hives. Appl. Environ. Microbiol. 81, 7261–7270 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox-foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse dysfunction. Science 318, 283–287 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Anderson, Ok. E., Rodrigues, P. A. P., Mott, B. M., Maes, P. & Corby-Harris, V. Ecological succession within the honey bee intestine: shift in lactobacillus pressure dominance throughout early grownup growth. Microb. Ecol. 71, 1008–1019 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Powell, J. E., Martinson, V. G., City-Mead, Ok. & Moran, N. A. Routes of acquisition of the intestine microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee intestine microbiota promotes host weight acquire by way of bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. USA 114, 4775–4780 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, Ok. E. et al. Hive-stored pollen of honey bees: many traces of proof are according to pollen preservation, not nutrient conversion. Mol. Ecol. https://doi.org/10.1111/mec.12966 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ludvigsen, J. et al. Shifts within the midgut/pyloric microbiota composition inside a honey bee apiary all through a season. Microb. Environ. 30, 235–244 (2015).

    Google Scholar 

  • Corby-Harris, V., Maes, P. & Anderson, Ok. E. The bacterial communities related to honey bee (Apis mellifera) foragers. PLoS ONE 9, e95056 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Münch, D., Kreibich, C. D. & Amdam, G. V. Getting old and its modulation in a long-lived employee caste of the honey bee. J. Exp. Biol. 216, 1638–1649 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Amdam, G. V. Social context, stress, and plasticity of ageing. Getting old Cell 10, 18–27 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Haddad, L. S., Kelbert, L. & Hulbert, A. J. Prolonged longevity of queen honey bees in comparison with staff is related to peroxidation-resistant membranes. Exp. Gerontol. 42, 601–609 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Robinson, G. E. Hormonal and genetic management of honeybee division of labour. Behav. Physiol. Bees 14–27 (1991).

  • Anderson, Ok. E. et al. The queen intestine refines with age: longevity phenotypes in a social insect mannequin. bioRxiv https://doi.org/10.1101/297507 (2018).

    Article 

    Google Scholar 

  • Amdam, G. V., Norberg, Ok., Hagen, A. & Omholt, S. W. Social exploitation of vitellogenin. Proc. Natl. Acad. Sci. 100, 1799–1802 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, B., Shipley, E. & Arnold, Ok. E. Social immunity in honeybees—density dependence, weight loss program, and physique mass trade-offs. Ecol. Evol. 8, 4852–4859 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Food plan results on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohashi, Ok., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase within the hypopharyngeal gland with an age-dependent position change of the employee honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Vannette, R. L., Mohamed, A. & Johnson, B. R. Forager bees (Apis mellifera) extremely categorical immune and cleansing genes in tissues related to nectar processing. Sci. Rep. 5, (2015).

  • Ohashi, Ok., Natori, S. & Kubo, T. Change within the mode of gene expression of the hypopharyngeal gland cells with an age-dependent position change of the employee honeybee Apis mellifera L.. Eur. J. Biochem. 249, 797–802 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, Z. Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158 (1996).

    Google Scholar 

  • Vojvodic, S. et al. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste growth. Ecol. Evol. 5, 4795–4807 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohashi, Ok. et al. Useful flexibility of the honey bee hypopharyngeal gland in a dequeened colony. Zool. Sci. 17, 1089–1094 (2000).

    CAS 

    Google Scholar 

  • Harwood, G., Salmela, H., Freitak, D. & Amdam, G. Social immunity in honey bees: royal jelly as a car in transferring bacterial pathogen fragments between nestmates. J. Exp. Biol. 224 (2021).

  • Santos, Ok. S. et al. Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.). Insect. Biochem. Mol. Biol. 35, 85–91 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).

    Google Scholar 

  • Mattila, H. R. & Otis, G. W. Dwindling pollen assets set off the transition to broodless populations of long-lived honeybees every autumn. Ecol. Entomol. 32, 496–505 (2007).

    Google Scholar 

  • Crailsheim, Ok., Riessberger, U., Blaschon, B., Nowogrodzki, R. & Hrassnigg, N. Brief-term results of simulated dangerous climate circumstances upon the behaviour of food-storer honeybees throughout day and night time (Apis mellifera carnica Pollmann). Apidologie 30, 299–310 (1999).

    Google Scholar 

  • Ricigliano, V. A. et al. Honey bees overwintering in a southern local weather: Longitudinal results of vitamin and queen age on colony-level molecular physiology and efficiency. Sci. Rep. 8, 1–11 (2018).

    CAS 

    Google Scholar 

  • Ricigliano, V. A. et al. Honey bee colony efficiency and well being are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 1–11 (2019).

    CAS 

    Google Scholar 

  • Fukuda, H. S. Ok. Seasonal change of the honey bee employee longevity in Sapporo, North Japan with notes on some elements affecting life span. Ecol. Soc. Jpn. 16, 206–212 (1966).

    Google Scholar 

  • Mattila, H. R., Harris, J. L. & Otis, G. W. Timing of manufacturing of winter bees in honey bee (Apis mellifera) colonies. Insect. Soc. 48, 88–93 (2001).

    Google Scholar 

  • Feliciano-Cardona, S. et al. Honey bees within the tropics present winter bee-like longevity in response to seasonal dearth and brood discount. Entrance. Ecol. Evol. 8, 1–8 (2020).

    Google Scholar 

  • Döke, M. A., Frazier, M. & Grozinger, C. M. Overwintering honey bees: biology and administration. Curr. Opin. Insect. Sci. 10, 185–193 (2015).

    PubMed 

    Google Scholar 

  • Liu, C. M. et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 12, 56 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. M. et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 12, 1 (2012).

    CAS 

    Google Scholar 

  • Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software program for describing and evaluating microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, J. D. Beepath: an ordered quantitative-PCR array for exploring honey bee immunity and illness. J. Invertebr. Pathol. 93, 135–139 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Bourgeois, A. L., Rinderer, T. E., Beaman, L. D. & Danka, R. G. Genetic detection and quantification of Nosema apis and N. ceranae within the honey bee. J. Invertebr. Pathol. 103, 53–58 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Pearson, Ok. Mathematical contributions to the idea of evolution. On a type of spurious correlation which can come up when indices are used within the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1986).

  • Gloor, G. B. & Reid, G. Compositional evaluation: a legitimate method to research microbiome excessive throughput sequencing knowledge. Can. J. Microbiol. 703, 0821 (2016).

    Google Scholar 

  • Comas, M. CoDaPack 2.0: a stand-alone, multi-platform compositional software program. Choices 1–10 (2011).

  • Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its penalties for bacterial group analyses. PLoS ONE 8, 1–10 (2013).

    Google Scholar 

  • Yek, S. H., Nash, D. R., Jensen, A. B. & Boomsma, J. J. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc. Biol. Sci. 279, 4215–4222 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect. Mol. Biol. 15, 645–656 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinmann, N., Corona, M., Neumann, P. & Dainat, B. Overwintering is related to diminished expression of immune genes and better susceptibility to virus an infection in honey bees. PLoS ONE 10, 1–18 (2015).

    Google Scholar 

  • Seehuus, S.-C.C., Norberg, Ok., Gimsa, U., Krekling, T. & Amdam, G. V. Reproductive protein protects functionally sterile honey bee staff from oxidative stress. Proc. Natl. Acad. Sci. USA 103, 962–967 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. R., Yang, Y. C., Shi, L. S. & Peng, C. C. Antioxidant properties of royal jelly related to larval age and time of harvest. J. Agric. Meals Chem. 56, 11447–11452 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Li-E, M., Jia, L., Yan, J., Xiao-Wen, L. & Xin, L. Isolation, purification and characterization of superoxide dismutase from royal jelly of the Italian employee bee, Apis mellifera. Acta Entomol. Sin. 47, 171–177 (2004).

    Google Scholar 

  • Bottacini, F. et al. Bifidobacterium asteroides PRL2011 genome evaluation reveals clues for colonization of the insect intestine. 7, 1–14 (2012).

  • Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. nov., from the abdomen of honeybees (Apis mellifera), having an in vitro inhibitory impact on the causative brokers of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157 (2014).

  • Casteels, P. et al. Isolation and characterization of abaecin, a significant antibacterial response peptide within the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381–386 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Casteels, P., Ampe, C., Jacobs, F. & Tempst, P. Useful and chemical characterization of hymenoptaecin, an antibacterial polypeptide that’s infection-inducible within the honeybee (Apis mellifera). J. Biol. Chem. 268, 7044–7054 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Barke, J. et al. A blended group of actinomycetes produce a number of antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 8, 109 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyapunov, Y. E., Kuzyaev, R. Z., Khismatullin, R. G. & Bezgodova, O. A. Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology 77, 373–379 (2008).

  • Paiva, C. N. & Bozza, M. T. Are reactive oxygen species all the time detrimental to pathogens?. Antioxid. Redox Sign. 20, 1000–1034 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burritt, N. L. et al. Sepsis and hemocyte loss in honey bees (Apis mellifera) Contaminated with Serratia marcescens pressure sicaria. PLoS ONE 11, 1–26 (2016).

    Google Scholar 

  • Bae, Y. S., Choi, M. Ok. & Lee, W. J. Twin oxidase in mucosal immunity and host-microbe homeostasis. Traits Immunol. 31, 278–287 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct position for twin oxidase in Drosophila intestine immunity. Science 80(310), 847–850 (2005).

    ADS 

    Google Scholar 

  • Crailsheim, Ok., Hrassnigg, N., Gmeinbauer, R., Szolderits, M. J. & Schneider, L. H. W. Pollen utilization in non-breeding honeybees in Winter. J. Insect. Phys. 39, 369–373 (1993).

    Google Scholar 

  • Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: annotation and phylogeny. 15, 687–701 (2006).

  • Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome idea and the honey bee pathosphere. Curr. Opin. Insect. Sci. 10, 1–7 (2015).

    PubMed 

    Google Scholar 

  • Corona, M., Hughes, Ok. A., Weaver, D. B. & Robinson, G. E. Gene expression patterns related to queen honey bee longevity. Mech. Age. Dev. 126, 1230–1238 (2005).

    CAS 

    Google Scholar 

  • Santos, D. E., Souza, A. D. O., Tibério, G. J., Alberici, L. C. & Hartfelder, Ok. Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste growth mitigates ROS-mediated oxidative harm in queen larvae. 20200173, (2020).

  • [ad_2]

    Supply hyperlink