De novo design of discrete, steady 310-helix peptide assemblies

[ad_1]

  • Pauling, L., Corey, R. B. & Branson, H. R. The construction of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 (1951).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chakrabartty, A. & Baldwin, R. L. Stability of alpha-helices. Adv. Protein Chem. 46, 141–176 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lapenta, F., Aupic, J., Strmsek, Z. & Jerala, R. Coiled coil protein origami: from modular design ideas in the direction of biotechnological functions. Chem. Soc. Rev. 47, 3530–3542 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schulz, G. E. & Schirmer, R. H. Rules of Protein Construction (Springer, 1979).

  • Scholtz, J. M. & Baldwin, R. L. The mechanism of alpha-helix formation by peptides. Annu. Rev. Biophys. Biomol. Struct. 21, 95–118 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Woolfson, D. N. A short historical past of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dawson, W. M., Rhys, G. G. & Woolfson, D. N. In the direction of useful de novo designed proteins. Curr. Opin. Chem. Biol. 52, 102–111 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kuster, D. J., Liu, C., Fang, Z., Ponder, J. W. & Marshall, G. R. Excessive-resolution crystal constructions of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics. PLoS ONE 10, e0123146 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Burley, S. Ok. et al. RCSB Protein Knowledge Financial institution: highly effective new instruments for exploring 3D constructions of organic macromolecules for fundamental and utilized analysis and training in elementary biology, biomedicine, biotechnology, bioengineering and vitality sciences. Nucleic Acids Res. 49, D437–D451 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chothia, C., Levitt, M. & Richardson, D. Helix to helix packing in proteins. J. Mol. Biol. 145, 215–250 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Orengo, C. A. et al. CATH–a hierarchic classification of protein area constructions. Construction 5, 1093–1108 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gessmann, R., Axford, D., Owen, R. L., Bruckner, H. & Petratos, Ok. 4 full turns of a curved 310-helix at atomic decision: the crystal construction of the peptaibol trichovirin I-4A in a polar surroundings suggests a transition to α-helix for membrane operate. Acta Crystallogr. D 68, 109–116 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Toniolo, C. & Brückner, H. Peptaibiotics (Wiley, 2009).

  • Toniolo, C. & Benedetti, E. The polypeptide 310-helix. Traits Biochem. Sci. 16, 350–353 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gessmann, R., Bruckner, H. & Petratos, Ok. The crystal construction of Z-(Aib)10-OH at 0.65 Å decision: three full turns of three10-helix. J. Pept. Sci. 22, 76–81 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Solà, J., Helliwell, M. & Clayden, J. Interruption of a 310-helix by a single Gly residue in a poly-Aib motif: a crystallographic research. Biopolymers 95, 62–69 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Pike, S. J., Boddaert, T., Raftery, J., Webb, S. J. & Clayden, J. Participation of non-aminoisobutyric acid (Aib) residues within the 310 helical conformation of Aib-rich foldamers: a stable state research. New J. Chem. 39, 3288–3294 (2015).

    CAS 
    Article 

    Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Gurunath, R. & Balaram, P. Facile transition between 310– and α-helix: constructions of 8-, 9-, and 10-residue peptides containing the -(Leu-Aib-Ala)2-Phe-Aib-fragment. Protein Sci. 3, 1547–1555 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Toniolo, C. et al. Most popular conformation of the terminally blocked (Aib)10 homo-oligopeptide: an extended, common 310-helix. Biopolymers 31, 129–138 (1991).

    CAS 
    Article 

    Google Scholar 

  • Nagaraj, R. & Balaram, P. Alamethicin, a transmembrane channel. Acc. Chem. Res. 14, 356–362 (1981).

    CAS 
    Article 

    Google Scholar 

  • Toniolo, C. et al. Conformation of pleionomers of .alpha.-aminoisobutyric acid. Macromolecules 18, 895–902 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Karle, I. L. & Balaram, P. Structural traits of alpha-helical peptide molecules containing Aib residues. Biochemistry 29, 6747–6756 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Byrne, L. et al. Foldamer-mediated distant stereocontrol: >1,60 uneven induction. Angew. Chem. Int. Ed. 53, 151–155 (2014).

    CAS 
    Article 

    Google Scholar 

  • Lister, F. G. A., Le Bailly, B. A. F., Webb, S. J. & Clayden, J. Ligand-modulated conformational switching in a totally artificial membrane-bound receptor. Nat. Chem. 9, 420–425 (2017).

    CAS 
    Article 

    Google Scholar 

  • De Poli, M. et al. Conformational photoswitching of an artificial peptide foldamer sure inside a phospholipid bilayer. Science 352, 575–580 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Formaggio, F. et al. The primary water-soluble 310-helical peptides. Chemistry 6, 4498–4504 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zieleniewski, F., Woolfson, D. N. & Clayden, J. Automated solid-phase concatenation of Aib residues to kind lengthy, water-soluble, helical peptides. Chem. Commun. 56, 12049–12052 (2020).

    CAS 
    Article 

    Google Scholar 

  • Woolfson, D. N. Coiled-coil design: up to date and upgraded. Subcell. Biochem. 82, 35–61 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fletcher, J. M. et al. A foundation set of de novo coiled-coil peptide oligomers for rational protein design and artificial biology. ACS Synth. Biol. 1, 240–250 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. A change between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kumar, P. & Woolfson, D. N. Socket2: a program for finding, visualising, and analysing coiled-coil interfaces in protein constructions. Bioinformatics 37, 4575–4577 (2021).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Swanson, C. J. & Sivaramakrishnan, S. Harnessing the distinctive structural properties of remoted alpha-helices. J. Biol. Chem. 289, 25460–25467 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brown, R. A., Marcelli, T., De Poli, M., Sola, J. & Clayden, J. Induction of sudden left-handed helicity by an N-terminal L-amino acid in an in any other case achiral peptide chain. Angew. Chem. Int. Ed. 51, 1395–1399 (2012).

    CAS 
    Article 

    Google Scholar 

  • Thomson, A. R. et al. Computational design of water-soluble alpha-helical barrels. Science 346, 485–488 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thomas, F. et al. De novo-designed alpha-helical barrels as receptors for small molecules. ACS Synth. Biol. 7, 1808–1816 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Enkhbayar, P., Hikichi, Ok., Osaki, M., Kretsinger, R. H. & Matsushima, N. 310-helices in proteins are parahelices. Proteins 64, 691–699 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kumar, P. & Bansal, M. HELANAL-Plus: an internet server for evaluation of helix geometry in protein constructions. J. Biomol. Struct. Dyn. 30, 773–783 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lupas, A. N. & Gruber, M. The construction of alpha-helical coiled coils. Adv. Protein Chem. 70, 37–78 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hunter, C. A. & Sanders, J. Ok. M. The character of π-π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    CAS 
    Article 

    Google Scholar 

  • Mortenson, D. E. et al. Excessive-resolution constructions of a heterochiral coiled coil. Proc. Natl Acad. Sci. USA 112, 13144–13149 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fox, R. O. Jr. & Richards, F. M. A voltage-gated ion channel mannequin inferred from the crystal construction of alamethicin at 1.5-Å decision. Nature 300, 325–330 (1982).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bunkoczi, G., Schiell, M., Vertesy, L. & Sheldrick, G. M. Crystal constructions of cephaibols. J. Pept. Sci. 9, 745–752 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mendel, D., Ellman, J. & Schultz, P. G. Protein biosynthesis with conformationally restricted amino acids. J. Am. Chem. Soc. 115, 4359–4360 (1993).

    CAS 
    Article 

    Google Scholar 

  • Leonard, D. J., Ward, J. W. & Clayden, J. Uneven α-arylation of amino acids. Nature 562, 105–109 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Collie, G. W. et al. Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation. Nat. Chem. 7, 871–878 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, P. S. & Schepartz, A. β-Peptide bundles: Design. Construct. Analyze. Biosynthesize. Chem. Commun. 52, 7420–7432 (2016).

    CAS 
    Article 

    Google Scholar 

  • Chandramouli, N. et al. Iterative design of a helically folded fragrant oligoamide sequence for the selective encapsulation of fructose. Nat. Chem. 7, 334–341 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Girvin, Z. C., Andrews, M. Ok., Liu, X. & Gellman, S. H. Foldamer-templated catalysis of macrocycle formation. Science 366, 1528–1531 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, G. & Dunbrack, R. L. Jr. PISCES: a protein sequence culling server. Bioinformatics 19, 1589–1591 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Joosten, R. P. et al. A sequence of PDB associated databases for on a regular basis wants. Nucleic Acids Res. 39, D411–419 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hunter, J. D. Matplotlib: a 2D graphics surroundings. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar 

  • The PyMOL Molecular Graphics System Open-Supply v2.4.0 (Schrödinger, 2021).

  • Schuck, P. Dimension-distribution evaluation of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Laue, T., Shah, B., Ridgeway, T. & Pelletier, S. in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds Harding, S. E. et al.) 90–125 (Royal Society of Chemistry, 1992).

  • Zhao, H., Piszczek, G. & Schuck, P. SEDPHAT–a platform for world ITC evaluation and world multi-method evaluation of molecular interactions. Strategies 76, 137–148 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winter, G. xia2: an professional system for macromolecular crystallography information discount. J. Appl. Crystallogr. 43, 186–190 (2010).

    CAS 
    Article 

    Google Scholar 

  • Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a brand new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Evans, P. Scaling and evaluation of knowledge high quality. Acta Crystallogr. D 62, 72–82 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Evans, P. R. & Murshudov, G. N. How good are my information and what’s the decision? Acta Crystallogr. D 69, 1204–1214 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Evans, P. R. An introduction to information discount: space-group dedication, scaling and depth statistics. Acta Crystallogr. D 67, 282–292 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sheldrick, G. M. SHELXT – built-in space-group and crystal-structure dedication. Acta Crystallogr. A 71, 3–8 (2015).

    MATH 
    Article 
    CAS 

    Google Scholar 

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. Ok. & Puschmann, H. OLEX2: an entire construction answer, refinement and evaluation program. J. Appl. Crystallogr. 42, 339–341 (2009).

    CAS 
    Article 

    Google Scholar 

  • Sammito, M. et al. ARCIMBOLDO_LITE: single-workstation implementation and use. Acta Crystallogr. D 71, 1921–1930 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Caballero, I. et al. ARCIMBOLDO on coiled coils. Acta Crystallogr. D 74, 194–204 (2018).

    CAS 
    Article 

    Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and growth of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Afonine, P. V. et al. In the direction of automated crystallographic construction refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal constructions. Acta Crystallogr. D 67, 355–367 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liebschner, D. et al. Macromolecular construction dedication utilizing X-rays, neutrons and electrons: current developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    CAS 
    Article 

    Google Scholar 

  • Winn, M. D. et al. Overview of the CCP4 suite and present developments. Acta Crystallogr. D 67, 235–242 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Joosten, R. P., Lengthy, F., Murshudov, G. N. & Perrakis, A. The PDB_REDO server for macromolecular construction mannequin optimization. IUCrJ 1, 213–220 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • [ad_2]

    Supply hyperlink